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We present in this paper an alternative approach to determining and 

predicting the fluctuations in the daily prices and stock returns of a first-

generation bank in the Nigerian Stock Market (NSM). The approach uses a 

three-state Markov to estimate the expected duration of the asset returns in 

states classified as rising (positive) (𝑅𝑘), falling (negative) state (𝑅𝑚) or 

stable (zero) state (𝑅𝑙). Related goodness-of-fit tests show that the Markov 

model fits the data adequately with an error rate of approximately 0.1. The 

maximum expected lengths of successively being in either positive or negative 

regime is 4 days, while that of zero regime is 12 days, within any trading 

month of the study period (August 2005-Jnauary 2012). For the 2005-2009 

period which encompasses post-2004 banking reform and the 2007-2009 

global financial crisis, runs of zero returns dominate those of positive and 

negative returns about 59% of the time, indicating a lack of pronounced 

asymmetric effects in the bank’s returns. The findings further reveal a 

minimum trading cycle of 7 days in February and a maximum cycle of 18 days 

in the months of May and October. The paper provides useful insights not only 

on the durations of returns in the three states, but on the Markovian transition 

probabilities among pairs of states which have implications for how investors 

could trade and invest in the bank stock or in a portfolio with bank stocks, if 

the same approach is used to characterise the returns dynamics of other banks 

in the NSM.  
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1.0 Introduction 

Understanding asset price behaviour has over the years helped many market 

practitioners, financial analysts and traders to deal with the risks associated 
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with fluctuations in prices, and to take better decisions about future states of 

the price. These risks are often summarised by the variances and volatilities of 

future returns. Hence, analysing financial data using appropriate, if possible 

new models, is of interest to market participants, Chakrabarti, Chakraborti and 

Chatterjee (2006). 

Historically, stock price behaviour has been widely explored in finance, from 

such perspectives as use of theory of random walks to characterise 

fluctuations in stock prices over time (Bachelier, 1914; Fama, 1965), the 

efficient market hypothesis (EMH), and ARCH-GARCH modelling of time-

dependent volatilities (Engle, 1982; Bollerslev, 1986). Fama (1965) confirms 

that stock prices satisfy random walks hypothesis, namely that a series of 

price changes has no memory, indicating that past price dynamics cannot be 

used in forecasting the future price. The EMH states that security price 

changes can only be explained by the arrival of new information which is 

quite challenging to predict (Lendasse et al., 2008). These approaches are 

generally part of the traditional literature on asset price modelling which are 

linked to portfolio theory and investment decisions.  

An as yet unexplored perspective, especially for bank stocks in the Nigerian 

Stock Market (NMS), is how investors and market participants can benefit 

from an understanding of asset returns fluctuations among states which are 

classified as zero, and positive and negative returns, and how the dynamics of 

this state-dependent returns behaviour should be modelled. This paper uses 

Markov chain analysis to fill this gap in knowledge. In other words, instead of 

examining the returns volatility, we model the persistence of the three possible 

regimes or states of a given bank return series in the NSM, and obtain 

measures such as the expected duration of returns in each state, which will 

provide additional investment insights to market participants interested in the 

stock. The selected first-generation bank in the study is First Bank of Nigeria. 

The overall aim of the paper is to present a three-state Markovian model of the 

behaviour of the bank stock returns over the study period August 2005-2012, 

which encompasses the 2004 bank reforms in Nigeria and the 2007-2009 

global financial crisis. The specific objectives are: 1) to explore the different 

returns data and the associated trading cycles which produce the returns, 

namely the numbers of positive, zero and negative runs (with a trading cycle 

as a sum of these runs); 2) to perform the Markov chain analysis described in 

the methodology, including a) transition probabilities of the returns across the 
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different states for each month, b) the equilibrium probabilities and relative 

persistence (duration) of returns in zero, positive and negative states for given 

trading cycles, and the length of time it takes to reach equilibrium, and 3) to 

discuss the plausible implications of these results for investment decisions of 

market participants. The focus of the paper is on the duration in and 

transitions among states, not on the actual magnitudes of the returns. A related 

study may extend the research to a combined analysis of the Markovian bank 

returns dynamics and the associated returns values, using suitable stochastic 

models, for example a marked Markov point process.  

The paper is in our view a novel application of Markov chain analysis, 

typically used in weather forecasting of rainfall patterns, to bank returns 

analysis. It provides similar ‘investment forecasting’ procedures in stock 

market analysis. Apart from further discussions of the benefit of such insights 

in trading and investment decision making, which is presented in some detail 

later in the paper, especially as regards the roles of the equilibrium and 

monthly transition probabilities for the different returns, such applications of 

mainstream stochastic processes will enrich the teaching of stochastic models 

in statistics programmes of Nigerian universities. 

The rest of the paper is as follows. Section 2 presents related literature on 

stock price modelling, with supporting notes on similar Markov chain 

applications as used in this paper. Section 3 is the methodology. Section 4 

presents and discusses the results. Section 5 summarises the contributions of 

the paper to knowledge and concludes the paper.  

2.0 Literature Review 

This section discusses selected literature on stock price (returns) modelling, 

and reiterates the gaps in knowledge which motivate the paper. A number of 

stylized facts on the stochastic behaviour of stock returns have been explored 

in the literature, namely the fact that the distributions of stock prices are 

leptokurtic (more highly peaked than normal) (Fama, 1965; Mandelbrot, 1963 

and Nelson, 1991); return series are often characterised by volatility 

clustering, a phenomenon whereby positive and negative changes move 

together, with consequent ARCH-GARCH modelling of such time-dependent 

volatilities (Mandelbrot, 1963; Engle, 1982; Bollerslev, 1986); and the fact 

that changes in stock prices tend to be inversely related to changes in 

volatility, among other stylized facts related to tail behaviour of asset return 
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distributions (Black, 1976; Christie, 1982; Bekaert and Wu, 2000). Other 

perspectives include the asymmetry in asset return volatilities due to 

differential impact of positive and negative news and returns in financial 

markets (Black, 1976; French et al., 1987; Nelson, 1991; and Glosten, 

Jagananthan and Runkle, 1993), whereby negative returns increase volatility 

more significantly than positive returns of equal magnitude; and the fact that 

this asymmetric volatility is pronounced during stock market crashes (Nelson, 

1991; Adamu, 2010; Ali & Afzal, 2012; Wu, 2001).  Particularly, Black 

(1976) and Christie (1982) identify leverage effects in stock returns, whereby 

negative returns due to falling prices lead to increase in financial leverage 

associated with debt financing through share price dealings, thereby making 

stocks to be very volatile.  

There have been limited studies of volatility and general asset price 

behaviours of Nigerian banks in these regards. There is also no study that 

adopts an alternative approach which focuses attention on the changes in bank 

stock returns among zero, positive and negative returns states. Such an 

alternative approach will complement the knowledge provided by traditional 

asset price volatility and investment portfolio analyses. This paper fills this 

gap by adopting a Markovian approach for analysing bank return movements, 

using First Bank plc as a focal point. The choice of this bank is because it is a 

first-generation bank in Nigeria with continuing stock market presence over 

the study period, which means that the results will provide some indications of 

these behaviours for the banking sector, before a comparative study of 

different bank stocks along similar lines is implemented. 

The use of Markov processes in finance and economics is not new. Hamilton 

(1990) applies Goldfeld and Quandt (1973)’s Markov switching regression in 

characterizing growth dynamics within an autoregressive process, and 

observes that an economy switches between two distinct phases of fast and 

slow growths in a manner governed by the outcome of a Markov process. 

Nefti (1984) applies a second-order Markov process to US employment data 

and finds that the US economy transits between two states (rising and falling 

states) with respect to unemployment rates. Kim and Nelson (1998) and Kim, 

et al. (1998) also apply regime-switching models to stock returns from the US 

data. Chu, Santoni and Liu (1996) adopt a two-step approach to underpin 

stock return behaviour. First, they model stock return as a Markov switching 

process, and then estimate a volatility equation, given different return regimes 

derived in the first stage. Their findings reveal evidence of higher volatilities 
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when the returns are either above or below some normal level, which can be 

assumed to be a baseline zero return level similar the zero return state in this 

paper. 

According to Nielsen and Olesen (2001), identifying multiple regimes is 

useful for understanding stylized facts of stock returns and possibly predicting 

the returns. Ceccehetti, Lam and Mark (1990) apply a regime-switching model 

and demonstrate that an economy shifts between high and low growth phases. 

Bhar and Hamori (2001) observe that many researchers have suggested that 

the return generating process is composed of different regimes characterized 

by different volatilities. Thus, they developed a bi-variate Markov switching 

heteroscedastic model to determine the links between monthly stock returns of 

G-7 countries and the growth rate in industrial production between 1971 and 

2000.  

By way of wider theoretical remits, some studies: use Markov models in the 

context of heteroscedasticity, risk and learning in stock markets, which can be 

applied in this line of work to the overall banking and financial services sector 

of the NSM (Turner et al., 1989); explore more mathematical statistics 

perspectives such as simulated moments estimation (SME) of Markov models 

of asset prices, which provide further theoretical directions for follow-on 

research on this paper (Duffie and Singleton 1993); in the contexts of stock 

market volatility and exchange rates in emerging markets (Walid et al., 2011); 

and also in modelling conditional distributions of interest rates as regime-

swtiching Markov processes (Gray, 1996). 

Contrary to the above-mentioned studies which use actual values of the stock 

returns, in this paper we focus attention on the returns states and determine 

Markovian persistence probabilities for returns in the different states, within 

monthly trading cycles in the study period.  

According to Bachellier (1914) and Fama (1965), stock prices exhibit random 

walk behaviour, and the possible states (𝑘- positive, 𝑙-zero and 𝑚-negative) 

are distinct and non-overlapping. In this paper, the probabilities and durations 

of returns in these states provide an indirect check on the validity or otherwise 

of the random walk hypothesis for the bank’s stocks.  In addition, the price 

behaviour could be likened to rainfall patterns and Markov models have been 

used extensively to study the occurrences of dry, wet and rainy spells for 

(daily, weekly and monthly) rainfall data (Weiss, 1964; Green, 1965, 1970; 

Purohit et al., 2008; Garg and Singh, 2010; and Raheem et al., 2015).  
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3.0  Methodology 

The methodology consists of an exploration of the observed data on stock 

price and returns over the study period to visualise the relative behaviour of 

the data in periods associated with the post-2004 bank returns and the 2007-

2009 global financial crisis, and the Markov modelling of the derived data on 

runs of zero, positive and negative returns. The data analysis is focused on 

such stock return characteristics mentioned in the research objectives in the 

introduction to the paper.  

 

We note that the principal focus of this paper is on investment decisions 

related to monthly trading of bank shares. This is because asset trading in 

financial markets is a very short-time process which occurs in seconds and 

hours (in the case of algorithmic trading), days, weeks and months (at most). 

Consequently, the applicable transition probability matrices and related 

equilibrium probabilities are monthly. We will explore in future work 

circumstances in which yearly transitions would be meaningful, which is more 

likely to be associated with portfolio optimisation over such periods. For this, 

it will be necessary to obtain an overall yearly transition probability and test 

for its stationarity. 

 

Daily closing stock prices of First Bank of Nigeria were obtained from Cash 

Craft site (http://www.cashcraft.com/pmovement.php), for the period 1
st
 

August, 2005 to 1
st
 August, 2012. We calculated the daily compounded 

returns of the bank from these prices. This study period enables us to relate 

the behaviour of bank stock returns to periods associated with post-2004 

Nigerian banking reform, the 2007-2009 global financial crisis, and the 2009-

2010 recapitalization of some failing Nigerian banks by the Central Bank of 

Nigeria (CBN).   

 

We denote the Markovian process of stock return movements as a family of 

unobserved random variables, 𝑠𝑡
∗, known as the state or regime at which such 

process was (is) at date ‘𝑡’. Three states (regimes) are used, namely 𝑠𝑡
∗ =

𝑘, 𝑙 𝑎𝑛𝑑 𝑚 with 𝑠𝑡
∗=𝑘, called positive (" + " = 1) state; 𝑠𝑡

∗ = 𝑙, zero ("0" = 2) 

or stable state and 𝑠𝑡
∗ = 𝑚, negative (" − " =  3) state.  Since  𝑠𝑡

∗ takes on only 

http://www.cashcraft.com/pmovement.php
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discrete values, we use Markov chain techniques to analyse the process. We 

therefore generate simple daily returns (𝑅𝑡), which are categorised into any of 

these regimes. Thus, 𝑅𝑡 is said to be in k state (𝑠𝑡
∗= 𝑘), 𝑅𝑠𝑡

∗ at time‘𝑡’ when it 

takes on positive value; 𝑅𝑡 is in 𝑙-state (𝑠𝑡
∗ =  𝑙), 𝑅𝑠𝑡

∗ at time ‘𝑡’ when it 

assumes zero ( 0-value) and in m-state, (𝑠𝑡
∗=𝑚), 𝑅𝑠𝑡

∗ when it takes on negative 

value. Thus, in forming the possible states the ‘signs’ are considered rather 

than using the actual value of a return. 

3.1 The Markov Chain model 

Let  𝑅𝑡 be a random variable that can assume an integer value {1, 2, 3… N}, 

with Markovian probabilities 𝑅𝑡 defined by   

𝑃𝑟(𝑅𝑡 =𝑗 ǀ 𝑅𝑡−1=𝑖 , 𝑅𝑡−2=𝑘 , … … ) = Pr(𝑅𝑡 =𝑗 ǀ 𝑅𝑡−1=𝑖 ) =   𝑃𝑖𝑗 ;  

[∀ 𝑖, 𝑗 = 𝑘, 𝑙, 𝑚]                                      (1) 

In this paper such a process has 𝑁 states, with 𝑁 = 3,   𝑘 = 1, 𝑙 = 2, 𝑚 = 3 

The transition probability, 𝑃𝑖𝑗 gives the probability that state ′¡ ′ will be 

followed by state j. Also note that: 

 𝑃𝑖1 + 𝑃𝑖2 + 𝑃𝑖3 + … + 𝑃𝑖𝑁 = 1                                                                    (2) 

Hence, we have that 

 𝑃𝑖1 + 𝑃𝑖2 + 𝑃𝑖3 = 𝑃𝑖+  = 1; ∀ 𝑖 = 𝑘, 𝑙, 𝑚                                                                    (3) 

The data observed as the daily returns are taken as three-state Markov chain 

with state space, S = { 𝑘, 𝑙, 𝑚 }. The current daily return was expected to 

depend only on that of the preceding day; thus, the observed frequency and 

the transition probability matrix are given as:  
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  Table 1: Observed Frequency Table 

 

The maximum likelihood estimators of  𝑃𝑖𝑗  (𝑖, 𝑗 =  𝑘, 𝑙, 𝑚) 𝑎re given by  

 𝑝̂𝑖𝑗  =    
𝑅𝑖𝑗

Σ 𝑅𝑖𝑗𝑗=𝑑
𝑟       𝑤ℎ𝑒𝑟𝑒  𝑖, 𝑗 =  𝑘, 𝑙, 𝑚                                                           (4) 

 

We define the Transition Probability Matrix (TPM) as  

 𝑷  =   (𝑃𝑖𝑗)   = (𝑃 (𝑗/𝑖))    ∀ 𝑖, 𝑗  𝜖  𝑆                                                           (5) 

The matrix is depicted as shown below, 

Table 2: Transition Probability Matrix 

 

subject to the condition that the sum of probabilities of each row is one (1).     

For any system to be modeled by the Markov chain, it must satisfy the 

following assumptions: 1) the present state of the system (process) depends 

only on the immediate past state; and 2) the transition probability matrices are 

stationary in time, that is the transition probability does not change with time.  

3.2 Tests of goodness of fit of the Markovian model 

This section validates the use of a three-state Markov Chain to ascertain the 

Markovian assumption that current day’s return depends on that of the 

previous day. To realize this, two methods have been used, namely the 

conventional test for independence via chi-square statistic and WS test 

statistic that was proposed by Wang and Maritz (1990) for the purpose of 

  Current      Day  

Total Positive(𝒌) Zero (𝒍) Negative(𝒎) 

Previous 

Day 

Positive(𝒌) 𝑅𝑘𝑘  𝑅𝑘𝑙  𝑅𝑘𝑚  𝑅𝑘. 

Zero (𝒍) 𝑅𝑙𝑘  𝑅𝑙𝑙  𝑅𝑙𝑚  𝑅𝑙. 

Negative(𝒎) 𝑅𝑚𝑘  𝑅𝑚𝑙  𝑅𝑚𝑚  𝑅𝑚. 

 

Positive(k) Zero(l) Rainy(m)

Previous Positive(k)

Zero(l)

Day Negative(m)

Current      Day
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testing the goodness-of-fit of the Markov model. Hence, we test the 

hypotheses:  

H0: Asset returns on consecutive days are independent  

H1: Asset returns on consecutive days are not independent 

 

The Chi-Squared test statistic is given by 

𝜒2= ∑
(𝑅𝑖.𝑗 −𝐸𝑖𝑗)

2

𝐸𝑖𝑗

𝑁
𝑖,𝑗    ~ 𝜒2 (𝑖 − 1)(𝑗 − 1), 𝛼                                                   (6) 

Where 𝐸𝑖𝑗 represents the expected number of returns computed using the 

formula:  
 𝑅𝑖+   𝑅+𝑗    

𝑅++
 with 𝑅𝑖+  representing 𝑖𝑡ℎ row returns marginal total, 𝑅+𝑗 

is the 𝑗𝑡ℎ column returns marginal total, and 𝑅++ is the overall returns 

marginal total. 

The WS test statistic is given as: 

 

 𝑊𝑆 =  
𝑆𝑎+𝑆𝑏−1

√𝑉(𝑆𝑎+𝑆𝑏−1)
 

𝑃
→  𝑁 (0,1)                                                                      (7) 

Where  𝑊𝑆 is the test statistic 

 𝑆𝑎 = 𝑃𝑘𝑘 + 𝑃𝑙𝑙 + 𝑃𝑚𝑚                                                                                    (8) 

𝑆𝑏 = 𝑃𝑚𝑘  𝑃𝑘𝑚 + 𝑃𝑙𝑚 𝑃𝑚𝑙 +  𝑃𝑘𝑙 𝑃𝑙𝑘 − 𝑃𝑘𝑘 𝑃𝑙𝑙 − 𝑃𝑘𝑘 𝑃𝑚𝑚 − 𝑃𝑙𝑙  𝑃𝑙𝑙               (9) 

 𝑉(𝑆𝑎 + 𝑆𝑏 − 1) represents the variance of the maximum likelihood estimator 

given by: 

𝑉(𝑆𝑎 + 𝑆𝑏 − 1) = (21 2 3) [
1

𝑅𝑘. 𝑅𝑙.
+

1

𝑅𝑙. 𝑅𝑚.
+

1

𝑅𝑚.𝑅𝑘.
]                              (10) 

1, 2  𝑎𝑛𝑑 3  represent the stationary probabilities calculated as follows: 

 1 = [(1 + 𝑝) + (1 + 𝑠)𝑝/𝑞]−1                                                                  (11) 

2 = [𝑟 +   𝑝𝑠/𝑞] 1                                                                                     (12) 
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3 = [𝑝/𝑞] 1                                                                                                (13) 

p = [Pkm +
Plm(1−Pkk)

Plk
] (

1

1−𝑃𝑚𝑚
)                                                                  (14) 

r = (
Pml

1−Pll
)                                                                                                     (15) 

q = 1 + [
P𝑙𝑚Pmk

Plk(1−P𝑚𝑚)
]                                                                                     (16) 

𝑠 = (
𝑃𝑚𝑙

1−𝑃𝑙𝑙
)                                                                                                    (17) 

The critical region for the WS test statistic is given by (𝑊𝑆)𝐶 ≥ 𝑍∝ at ‘∝’ 

level of significance. That is the null hypothesis (𝐻𝑂) can be rejected if 

│WS│≥ 𝑍∝; where  𝑍∝ is the 100(1−∝) lower percentage point of a standard 

normal distribution.  

3.3 Expected Length of Different Trading Runs and Trading Cycle    

(TC) 

 

A positive run (𝑘) represents the sequence of consecutive daily positive 

returns preceded and followed by either zero or negative returns. Thus the 

probability of a sequence of ‘𝑘’ positive days is given by  

 

 𝑃 (𝑘)  =      (𝑃𝑘𝑘)𝑘−1 (1 − 𝑃𝑘𝑘)                                                                   (18) 

The expected length of positive runs is given by  

𝐸 (𝐾)   =   
1

(1−𝑃𝑘𝑘   )
                                                                                        (19) 

Where 𝑘 represents the number of positive returns preceded and  followed 

by zero or negative returns, (1 − 𝑃𝑘𝑘) is the probability of a return assuming 

either zero or negative value. A zero runs (𝑙) stands for the sequence of 

consecutive daily zero returns preceded and followed by positive or negative 

daily returns. The probability of a sequence of ‘𝑙’ is given by:  

𝑃(𝑙)  =  (𝑃𝑙𝑙)
𝑙−1 (1 − 𝑃𝑙𝑙)                                                                           (20) 

The expected length of zero run is given by  
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𝐸 (𝐿)   =   
1

(1−𝑃𝑙𝑙   )
                                                                                         (21) 

Where ‘𝑙’ is the number of zero daily returns preceded by either  positive or 

negative daily returns, while (1- 𝑃𝑙𝑙) is the probability of a  return being 

positive or negative. Finally, for negative runs (m) stands for the probability 

of a sequence of daily negative returns, and is given as: 

 

𝑃(𝑚) =  (𝑃𝑚𝑚)𝑚−1(1 − 𝑃𝑚𝑚)                                                                     (22) 

with the expected length of rainy spell obtained as: 

 𝐸(𝑀)   =  
1

(1−𝑃𝑚𝑚)
                                                                                         (23) 

where‘𝑚’ represents the number of negative returns preceded by  either zero 

or positive days; while (1 - 𝑃𝑟𝑟) is the probability of a return being either zero 

or positive. 

 

3.4 Trading Cycle (TC)  

The Returns (trading) cycle is given by  

𝐸(𝑇𝐶)  =  𝐸(𝐾)  +  𝐸(𝐿)  +  𝐸(𝑀)                                                             (24) 

where 𝐸(𝑇𝐶) is the expected length of trading cycle; that is, the length of time 

it will take the series (returns) to be found in each of the three regimes 

(positive, zero and negative); and go back to a particular state after leaving the 

regime,  𝐸(𝐾) is the expected length of daily positive returns, 𝐸(𝐿) is the 

expected length of zero returns, and 𝐸(𝑀) is the expected length of negative 

returns. The number of days (N) after which equilibrium state is achieved 

represents the number of times the probability transition matrix is powered till 

the elements of the rows of the matrix 𝑃𝑁 becomes the same. Thus for a 3x 3 

matrix, we expect the equilibrium point to be attained when we have the 

probability transition matrix to be powered until we have:  

 

 𝑃𝑁 =    [

𝑝1 𝑝1 𝑝1

𝑝2 𝑝2 𝑝2

𝑝3 𝑝3 𝑝3

]                                                                                   (25) 
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4.0  Results and Discussion  

We first visually present and discuss in Figures 1 and 2 below the inherent 

stylized facts on price and returns data series before the Markovian results.   

 

     Figure 1:  First Bank Closing Price Series (2005-2012) 

 

       Figure 2: Returns Series for First Bank (2005-2012) 
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A quick look at the price series in Figure 1 reveals the following features: a 

near exponential rise in prices following the 2004 bank reforms in the sub-

period between January 2005 and mid-2006; a downward trend between mid-

2006 and early 2007, with two sharp negative spikes between 2007 and 2008 

possibly associated with the global financial crisis; a recovery above these 

levels up to end of 2008; again a pronounced slump in prices between 2008 

and 2009 during the global financial crisis, with positive spike between end of 

2009 and early 2010, possibly due to further CBN-led recapitalisation of 

failing Nigerian banks to address challenges arising from the crisis. Thereafter 

the prices slowly decline with some pronounced negative spikes between 2010 

and 2012, possibly due to recent challenges in the Nigerian economy, 

including adverse fluctuations in oil prices. Also looking at the return series in 

Figure 2, the above price spikes observed between 2007 and 2009 and 2010 

and 2012 became pronounced manifesting the kind of time-dependent 

volatility traditionally analysed using ARH-GARCH volatility models, for 

example. Amidst these spikes is a wide range of near zero returns which 

suggest that the ensuing Markov chain analyses of regime transitions and 

durations may support the dominance of such returns, with additional 

investment implications compared to the traditional time series analyses.  

Recall the research objectives for easy follow-through here: ‘1) to derive and 

explore the different returns data and the associated trading cycles which 

produce the returns, namely the numbers of positive, zero and negative runs 

(with a trading cycle as a sum of these runs); 2) to perform the Markov chain 

analysis described in the methodology, including a) transition probabilities of 

the returns across the different regimes for each month, b) the equilibrium 

probabilities and relative persistence (duration) of returns in zero, positive and 

negative regimes for given trading cycles, and the length of time it takes to 

reach equilibrium; and 3) to discuss the plausible implications of these results 

for investment decisions of market participants’.  

In support of Objective 1, Fig. 3 below presents, respectively, the data on the 

frequencies of the returns regimes and trading cycles, in form of line graphs 

and bar charts. 
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Figure 3: Line Plot for the Distribution of Runs for the Three       

Regimes 

 

The plots show a dominance of zero-state returns, and a random walk-style 

mixed profile of positive and negative returns. As noted earlier in the 

methodology, the uneven numbers of positive and negative returns across the 

different months implies that the monthly trading decisions using the monthly 

transition matrices is more meaningful than a yearly analysis. 

 

Mainly related to Objective 2, Tables 3-14 below present the derived 

transition probability matrices.  
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Table 3: Prob. Transition Matrix for January 

 K L M 

K 0.7 0.025 0.275 

L 0.2 0.4 0.4 

M 0.3095 0.071 .019 

 

Table 4: Prob. Transition for February 

 K L M 

K 0.5152 0.0303 0.4545 

L 0.2 0.0 0.8 

M 0.3095 0.071 .019 

 

Table 5: Prob. Transition for March 

 K L M 

K 0.6154 0.0513 0.3333 

L 0.2222 0.7778 0.0 

M 0.3514 0.0274 0.6216 

 

Table 6: Prob. Transition for April 

 K L M 

K 0.5385 0.0 0.4615 

L 0.0769 0.8077 0.1154 

M 0.3611 0.1389 0.5000 

 
Table 7: Prob. Transition Matrix for May 

 K L M 

K 0.5484 0.0 0.4545 

L 0.0870 0.9130 0.0000 

M 0.3529 0.0588 0.5882 

 
Table 8: Prob. Transition Matrix for June 

 K L M 

K 0.4828 0.0345 0.4828 

L 0.2000 0.6000 0.2000 

M 0.4483 0.0690 0.4828 

 

 

 

 

 

 

 

 

 

Table 9: Probability transition for July 

 K L M 

K 0.6667 0.0000 0.3333 

L 0.1364 0.8636 0.0000 

M 0.3333 0.0333 0.6333 

 

Table 10: Prob. Transition for August 

 K L M 

K 0.5472 0.0377 0.4151 

L 0.0000 0.5000 0.5000 

M 0.3818 0.0182 0.6000 

 
Table 11: Prob. Trans. Matrix for September 

 K L M 

K 0.4444 0.1111 0.4444 

L 0.1579 0.6316 0.2105 

M 0.4038 0.0192 0.5769 

 

Table 12: Prob. Transition Matrix for October 

 K L M 

K 0.5330 0.0222 0.4444 

L 0.0869 0.9130 0.0000 

M 0.4390 0.0244 0.5366 

 
Table 13: Prob. Trans. Matrix for November 

 K L M 

K 0.6512 0.0930 0.2558 

L 0.087 0.7826 0.1304 

M 0.3500 0.0250 0.6250 

 
Table 14: Prob. Trans. Matrix for December 

 K L M 

K 0.5333 0.0333 0.4333 

L 0.1000 0.8333 0.0667 

M 0.2245 0.0612 0.7143 
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In line with the profile of returns data, these transition probabilities differ 

from month to month and indicate the relative likelihoods of incurring gains 

or losses or not in successive trading days, depending on the state of returns in 

preceding days. Though not pursued further in this paper, these results can be 

used to compute n-step unconditional probabilities of being in any of the 

states (which limits to the equilibrium distribution in the long run), or n-step 

conditional probabilities given starting states. These are standard Markov 

chain results which will map the dynamics of trading gains or losses over 

time. 

 

Having obtained the transition matrices for the series, we first tested the 

goodness-of-fit of the Markov chain model to the data, subject to its 

underlying assumptions highlighted earlier. For this, we used both traditional 

chi-square method and WS statistics, proposed by Wang and Martiz (1990). 

The test results showed evidence of model fitness for all the months except 

February in the case of Chi-square. For the WS statistics, only the month of 

June was insignificant, this can be confirmed from Table 15 below.  

 

Table 15: Test of Goodness-of-fit of monthly Markov Chain 

 

Having ascertained the fitness of the model, we obtained the equilibrium 

probabilities (denoted as s'  in Table 16 below) and expected length of the 

Markov chain being in each of the regimes within a month of trading.  

 

Months Chi-square result WS-statistic 

Jan 21.856 (significant) 8.447(significant) 

Feb 4.932 (Not significant) 3.2916(significant) 

March 49.481(significant) 56.58(significant) 

April 49.481(significant) 5.89(significant) 

May 71.606(significant) 21.73((significant) 

June 24.308(significant) 0.64 (Not significant) 

July 76.816(significant) 37.05(significant) 

August 16.688(significant) 21.948(significant) 

Sept 40.655((significant 10.40 (significant) 

October 116.187(significant) 7.78 (significant) 

November 68.08(significant) 40.45 (significant) 

December 78.258(significant) 30.56 (significant) 
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Table 16 : Equilibrium state probabilities, Expected length of different      

regimes runs, Trading Cycles and Length of time for equilibrium 

attainment 

 

We note that virtually in every stock market, 22 days of trading are the 

minimum that could be found in a given month.  The table shows that the 

bank’s returns transitions were generally stable, indicating no pronounced 

change across the months. For instance, for the months of May, July and 

October (looking at the raw data used in the analysis, but suppressed in the 

paper), there have been little or no change in the daily closing prices over a 

five-year period, which consequently led to more ‘Zero’ returns.  

 

Also, the stock price of First Bank plc seems to be less influenced by external 

shocks in the months of February, January, August, June and September, 

which take progressively smaller times (arranged in increasing order of 

magnitude) for stock trading returns to reach equilibrium, compared to 

October with the highest length of 45 each before the stability in transition 

probabilities is achieved. Hence, practically one can use the deduced transition 

probabilities to make investment trading decisions on the First Bank stock 

within most months of the year. 

 

 

Columns 5-7 of Table 16 show the long-run expected number of trading days 

of having continuous positive, negative and zero returns in, say, January are 4, 

2 and 3 days respectively, whereas in December these are 3, 6 and 4 days. 

Column 8 shows that the trading cycles, which represent the total time taken 

to transit and move round the three possible regimes vary across the months, 

Months 𝝅𝟏 𝝅𝟐 𝝅𝟑 Positive 

runs 

Zero 

Runs 

Negative 

Runs 

Trading 

cycle 

Length of 

time it takes 

to reach 

equilibrium 

Jan 0.49 0.07 0.43 4 2 3 9 10 

Feb 0.38 0.05 0.57 3 1 3 7 6 

March 0.45 0.15 0.40 3 5 3 11 28 

April 0.34 0.28 0.38 3 6 2 11 32 

May 0.35 0.26 0.39 3 12 3 18 45 

June 0.44 0.12 0.45 2 3 2 7 15 

July 0.47 0.10 0.43 4 8 3 15 33 

Aug 0.43 0.05 0.52 2 3 3 8 10 

Sept 0.38 0.14 0.48 2 3 3 8 15 

Oct 0.40 0.22 0.38 3 12 3 18 45 

Nov 0.42 0.22 0.36 3 5 3 11 19 

Dec 0.28 0.24 0.48 3 6 4 13 23 
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with 9 days in January and 13 days in December. This variation is 

schematized in Fig. 4 below, which shows that the trading cycles for both 

May and October with 18 cycles each are the highest, whereas those of 

February and June with 7 cycles each are the least.   

 

 

Figure 4: Bar Graph for the Distribution of the Trading Cycle per Month 

  

Furthermore, it could be seen from Figs. 3 and 4 above that the runs of 

negative returns are relatively higher in the months of May and October, 

followed by July, compared with the rest of the months.  

 

Additionally, we note that for this bank the percentage of times there are zero 

runs compared to positive and negative runs combined is about 58%, which 

again depicts relative stability of the stock price for the bank, as noted earlier. 

This implies that whilst trading in this asset is less risky because of the 

stability in the returns profile, it is less profitable because of the dominance of 

zero runs, considering that investors will typically incur transaction costs of 

carrying out such trades. In sum, a more active investor may use the above 

results as a way of measuring the month-by-month momentum of movements 

in the stock returns, which will complement other considerations that 

determine the worthwhileness of possibly trading in the stock or retaining it in 

a long-term portfolio.  
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5.0 Summary and conclusion 

This paper investigated the stock returns behavior of First Bank of Nigeria 

over the period 1 August 2005 to 1 August 2012, using  a three-state Markov 

model, particularly as regards the month-by-month transition probabilities 

across states of positive, zero and negative returns in daily transactions, the 

equilibrium probabilities and durations of being in each of these states in 

different months, the expected time to reach these equilibrium states, and the 

different trading cycle characteristics for different months. The potential for 

these dynamics to complement traditional stock price volatility and portfolio 

analyses was considered. The contributions of the paper to knowledge are 

summarized below. 

Theoretically, the paper applies Markov chain model results to non-traditional 

analysis of the dynamics of stock returns of First Bank plc in Nigeria, in light 

of bank reforms and global financial crisis. This provides complementary 

perspectives on stock investing based on durations of the returns on states of 

positive, zero or negative values, and the associated equilibrium and transition 

probabilities of being in any state in a trading day, given the preceding day’s 

regime. These considerations have not been explored before in the analysis of 

Nigerian asset prices. 

Practically, the results complement traditional time-dependent volatility 

modelling and mean-variance portfolio optimization in providing interested 

traders and investors with a richer repertoire of information to support their 

investment decisions. For instance, though not explored further in the paper, 

traders and investors can use the Markov short-run and long-run transition 

probabilities and information on returns durations in different regimes, to 

calculate the probabilities of different trading systems over time, typically 

measured by momenta and strategies for trading on the stocks in different 

months.  

By way of future work, the potential for these schemes to engender possible 

winning trading strategies will be enhanced when the results are applied to all 

the banks that are actively traded in the Nigerian Stock Market (NSM). It is, 

for example, feasible to construct such strategies using comparisons of these 

Markovian dynamics across different banks, and accommodating the relative 

return values alongside the returns regimes, using suitable stochastic models 

such as marked Markov and marked point processes, generalized or 

compound Poisson processes. For this, suitable probability distributions will 
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be used to model the actual positive and negative returns within the parent 

Markovian model used in this paper.  

Pedagogically, obtaining such characterizations of bank stock behavior across 

many banks in Nigeria provides interesting case studies for teaching stochastic 

processes to Nigerian students with real-life applications. 
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